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Tunneling conductance between a superconducting STM tip
and an out-of-equilibrium Luttinger liquid
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We calculate the current and differential conductance for the junction between a superconducting (SC)
scanning tunneling spectroscopy tip and a Luttinger liquid (LL). For an infinite single-channel LL, the SC
coherence peaks are preserved in the tunneling conductance for interactions weaker than a critical value, while
for strong interactions (g <0.38), they disappear and are replaced by cusplike features. For a finite-size wire in
contact with non-interacting leads, we find however that the peaks are restored even for extremely strong
interactions. In the presence of a source-drain voltage the peaks/cusps split, and the split is equal to the voltage.
At zero temperature, even very strong interactions do not smear the two peaks into a broader one; this implies
that the recent experiments of Y.-F. Chen et al. [Phys. Rev. Lett. 102, 036804 (2009)] do not rule out the

existence of strong interactions in carbon nanotubes.
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I. INTRODUCTION

Scanning tunneling spectroscopy (STM) is becoming an
important tool for accessing the electronic properties of low-
dimensional systems. Thus, in the past, the local density of
states (DOS) for various materials such as the cuprates,!
graphene,2 and carbon nanotubes® has been studied, both
theoretically and experimentally. In general the STM tip is
assumed to be a noninteracting metal with a constant DOS,
and the system to be analyzed is in equilibrium (the voltage
is constant throughout the sample). This allows one to extract
the unknown DOS directly from the STM tunneling
conductance.

Recently a few studies have also concentrated on tips that
are not normal metals, and that may have an intrinsic varia-
tion in the DOS, such as superconducting (SC) STM tips.*~¢
These experiments have the potential of measuring not only
the DOS, but also other quantities such as the Fermi distri-
bution. The first such experiment* looked at a noninteracting
system, and found that in equilibrium the differential con-
ductance from a SC STM tip shows the characteristic SC gap
and coherence peaks, while in the presence of a voltage bias
each peak splits into two peaks, with the distance between
them being given by the applied voltage. For a noninteract-
ing system this splitting can be traced back to an out-of-
equilibrium double-step Fermi distribution.

Similar experiments have been performed recently on car-
bon nanotubes,’ but the interpretation of these measurements
is not so straightforward, due to the presence of strong elec-
tronic interactions which make the elementary excitations no
longer fermionic but rather fractionally charged. One might
expect that the Fermi distribution is ill defined in these sys-
tems, and that the strong electronic interactions contribute to
the smearing of the two SC coherence peaks into a single
one. On the other hand the experiments of®> show the pres-
ence of two coherence peaks, which appear to imply that the
interactions in nanotubes are weak.

To fully assess the implications of this experiment one
needs to study theoretically the injection of electrons into a
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strongly interacting out-of-equilibrium one-dimensional sys-
tem. This is rather a challenging problem, that has not begun
to be addressed theoretically until quite recently.’!!

We study the injection from a SC tip into an out-of-
equilibrium clean LL, and we show that, even in the pres-
ence of very strong interactions, the tunneling conductance is
very similar to that of a noninteracting wire. Our calculations
therefore demonstrate that the apparently noninteracting fea-
tures observed in’ do not rule out the existence of strong
interactions in carbon nanotubes.

We begin by analyzing an infinite single-channel LL wire
in equilibrium, and we find that the tunneling conductance
displays SC coherence peaks for interactions weaker than a
critical value, corresponding to a fractional charge parameter,
g, larger than g.=0.38. Beyond this value the coherence
peaks disappear, and are replaced by cusplike features. Upon
taking into account the finite size of the wire!>”"> and the
presence of noninteracting contacts (as in the experiment of
Ref. 5) we find that the peaks reappear for any value of g.
Furthermore, the tunneling conductance shows also oscilla-
tions with a period inverse proportional to the length of the
wire and has a background power-law dependence whose
exponent depends on the strength of the interactions. Such
oscillations superposed over a power-law background have
also been noted in the DOS of a finite-size LL. measured
using a normal tip."

If a voltage is applied between the ends of the wire, the
peak/cusp features split. The magnitude of the split is exactly
equal to the applied voltage. At zero temperature we never
see a smearing of the two peaks into a single one, regardless
of the strength of the interaction. This is consistent with the
theoretical calculations in Ref. 9 showing a double-step
Fermi distribution in an out-of-equilibrium LL.

Our calculations show that the experimental setup of Ref.
5 can be used to asses the strength of the interactions if one
focuses instead on the power-law dependence of the density
of states. If one measured the density of states for a wide-
enough range of voltages (up to tens of meV) the data should
allow to extract the value of the interaction parameter g.
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FIG. 1. A quantum wire adiabatically coupled to metallic leads.
The leads are held at different chemical potentials u;=—eVgp/2 and
mr=eVsp/2. The electrons can tunnel from and into a supercon-
ducting STM tip at x=0. The voltage of the tip is fixed at V.

II. MODEL

A quantum wire connected to metallic leads is described
by the Hamiltonian

H=H0+Hv. (1)

Here H, describes the interacting wire and the leads in the
framework of the inhomogeneous single-channel LL
model®'?-1# (we will discuss at the end how our results are
affected by the presence of the extra channels of conduction
in nanotubes). Explicitly:

_ﬁUF - 2 1 2
Ho=" _m"x[n +g2<x>(‘9xq’)] .
“ dx
Hv=—f \—GM(X)L%CP(XJ)’ (3)

where ‘Hy describes the chemical potential applied to the
wire. The interaction parameter g(x) is space dependent and
its value is g in the bulk of the wire, and 1 in the leads. For
convenience, the end points of the wire are denoted by x;=
—L/2 and x,=L/2. The chemical potential is chosen such
that u(x)=—Vgp/2 for x<-L/2 (left lead), u(x)=Vyp/2 for
x>L/2 (right lead), and u(x)=0 for —-L/2<x<L/2

Tunneling is allowed between the wire and a supercon-
ducting tip at x=0. A schematic view of the system is shown
in Fig. 1. The voltage of the tip is fixed at V.

The Hamiltonian for the SC tip is assumed to be of the
BCS type with a linear dispersion (€,%k) and with a SC
Bardeen-Cooper-Schrieffer (BCS) coupling,

H,,= E 2 ekc,tacka + (Acycy +He). (4)
k a=1,l

Our results do not depend on the details of the dispersion and
of the dimensionality of the tip, as long as the tip DOS has
the standard BCS form v,(€)=60(e-A)e/Ve*—A>.

The tunneling between the tip and the wire is described by
the local Hamiltonian
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Hy= th(x:O)[‘l’ﬁ(x:O) + ‘I’i(x:O)] +Hec.,, (5

where ‘lfﬁ/ L(x) are the chiral fermionic interacting operators
that can be related to the free bosonic modes of the LL via
bosonization.'®

III. PERTURBATIVE EXPANSION OF THE
TUNNELING CURRENT

We use the nonequilibrium Keldysh formalism and we
perform a perturbative expansion up to second order in the
tunneling coefficient ¢, using the formalism developed in
Ref. 8 to calculate the tunneling current between a normal tip
and an out-of-equilibrium LL. We find that the tunneling
current between the SC tip and the wire at zero temperature
is

I |t f ) dtQ7(Im{exp[R (1) + iZ(H]F, (1)},  (6)
0

where for a finite-size wire®

0,(1) =2 cos<‘%l’t)sin(w>, (7)

and

1 2
R()=-——1(+g'-2) 2 p" =
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I(f)=—L|:(g+g_l—2) > pil arctan<7+m>

167 M€ Zeven Qw

(11)
T—m
+(g+g'+2) > p arctan( ) (12)
ME Zeyen Qw

—1y m| T+m T—m
+(g-g) E p"™| arctan + arctan R
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(13)

with 7=tvp/ gL, p=(1-g)/(1+g), and @y is a dimension-
less short-length cutoff. The quantity Q(z) incorporates the
effects of the applied tip voltage and source-drain voltage,
while R(r) and Z(t) are related to the Green’s functions of
the system and incorporate information about the finite size
via 7. For an infinite wire one should substitute these quan-
tities by:
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1 247
R()=-——(g+g )" (14)
167 ay
1 4 t
I(t)=— —(g + g~ ' —2)arctan| — |. (15)
8 ay

Here ay is a short-time (high-energy) cutoff for the infinite
wire.

For the superconducting tip, by taking a Fourier transform
of the usual SC Green’s function we obtain

F (1) = AK [ (it + ap)A], (16)

where ay is a short-time (high-energy) cutoff for the tip, and
K, is the first Bessel K function.

We can use the formulas above to compute numerically
the differential conductance dI/dV, as detailed in what fol-
lows. For an infinite wire we can also obtain analytically the
form of dI/dV (in equilibrium, Vg¢,=0) in a few limits: close
to the singularity at V=A, as well as for V>A. When V
~A:

dl

A (V=A)"172, (17)

For noninteracting systems y=0, and the tunneling conduc-

tance diverges as expected: d—IOC(V— A)~'2_In the presence

of interactions this exponen?vis modified. For very strong
interactions 7 increases, the exponent changes sign, and the
divergence is replaced by a power-law-type cusp. This re-
gime is achieved when y>1/2, which corresponds to g
<0.38.

When V> A we obtain

— VY (18)
dv
For noninteracting systems the tunneling conductance is con-
stant at large V. In the presence of interactions the conduc-
tance acquires a power-law background with a positive ex-
ponent y as expected for tunneling into a LL.

IV. TUNNELING CONDUCTANCE BETWEEN
A SC TIPAND A LL

A. Infinite wire

We focus first for the tunneling conductance of the junc-
tion between a SC tip and an infinite LL. In Figs. 2(a) and
2(b), we plot the tunneling conductance for Vg,=0, for g
=1 and g=0.5. We take A=1 in arbitrary units. In Figs. 2(c)
and 2(d), we plot the corresponding tunneling conductance
when Vsp=A. The source-drain voltage is applied such that
the average of the right and left potentials is zero, and the
bulk of the wire remains neutral. If the voltage of the bulk of
the wire becomes nonzero (because of, say, a gate voltage),
the curves will shift along the voltage axis such that the
symmetry point of the curve will no longer be at zero tip
voltage, but at a value of the tip voltage equal to the gate
voltage. As described above, for g=0.5>g. the SC coher-
ence peaks are preserved in the spectrum.
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FIG. 2. (Color online) In arbitrary units, the tunneling conduc-
tance from an STM tip into an infinite Luttinger liquid (in arbitrary
units) for LL interaction parameters g=1 [in a) and ¢)] and g=0.5
[in b) and d)]. The source-drain voltage Vg, is zero for a) and b),
and is Vgp=A=1 for ¢) and d).

In Figs. 3(a) and 3(c), we repeat the same calculation for
g=0.3<g. We see that indeed the peaks disappear and are
replaced by cusplike features, corresponding to a power-law
decay of the tunneling conductance Eq. (17).

B. Finite-size wire

Our results change significantly if we take into account
the finite size of the wire and the presence of metallic con-
tacts. In Figs. 3(b) and 3(d), we plot the tunneling conduc-
tance for ¢g=0.3 for a finite-size wire with characteristic
finite-size energy scale w;=hv,/gL=A/3. We see that the
peaks that disappear at infinite lengths are restored for a
finite-size system. This is consistent with previous observa-
tions for nanotubes:'>'* when V-A<w; the physics is
dominated by long wavelengths and is hence noninteracting.

Most importantly, for both infinite and finite systems, the
two features at A = V,/2 are not smeared into a single one,
regardless of the strength of the interactions. Thus, as far as
the peaks are concerned, even a very strongly interacting
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FIG. 3. (Color online) In arbitrary units, the tunneling conduc-
tance from a SC STM tip into an infinite [a) and ¢)] and finite-sized
[b) and d)] g=0.3 Luttinger liquid. The source-drain potential Vg,
is zero for a) and b) and is Vgp=A=1 for ¢) and d). The energy
corresponding to the finite size of the wire, Avg/gL, is taken to be
A/3.
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wire behaves as noninteracting. This is consistent with pre-
vious observations of a double-step out-of-equilibrium Fermi
distribution,® and explains why the features observed in Ref.
5 appear for both interacting and noninteracting systems. The
only signatures of interactions are the disappearance of the
peaks at very small g for the infinite wire, and the power-law
dependance of the tunneling conductance.

C. Carbon nanotubes

When the single-channel finite-size LL is replaced by a
carbon nanotube (that has four channels of conduction) the
positions of the singularities do not change. However, an
important difference is the reduction of the parameter y from
(g+1/g-2)/2 to (g+1/g-2)/8 because of the extra chan-
nels of conduction.!” Other differences will be as well
present, such as oscillations that will have two periodicities,
due to the different velocities of the charge and spin modes.
However, if only a very small number of oscillations are
observed (one or two) the qualitative aspect of these oscilla-
tions will not be affected significantly.

The critical value of g below which the peaks should dis-
appear in a infinite four-channel system is g.,~0.17. Never-
theless, the finite-size effects are always relevant for non-
chiral LLs such as the nanotubes, and hence we expect that
the spectra presented in Figs. 3(b) and 3(d), characterized by
oscillations and SC coherence peaks, should describe the
tunneling conductance between a SC tip and a nanotube in
all situations.

For a physical set of parameters, A=V=1.5 meV and
fhvp/gL=0.5 meV (corresponding to a tube length of
~4 pm at g=0.25), our results for the tunneling conduc-
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tance reproduce very well those measured in Ref. 5 (compare
for example Figs. 3(b) and 3(d) here with Figs. 2(c) and 3 in
Ref. 5).

V. CONCLUSION

To summarize, we have calculated the dependence on
voltage of the STM tunneling conductance between a super-
conducting STM tip and an out-of-equilibrium Luttinger lig-
uid. We have found that for an infinite single-channel LL in
equilibrium, one can observe SC coherence peaks for inter-
actions weaker than a critical value (g <0.38). Beyond this
value, the coherence peaks disappear and are replaced by
cusp-like features. We have also found that the peaks are
restored if one takes into account the finite size of the LL and
the presence of noninteracting contacts. For both infinite and
finite-sized wires, the tunneling conductance shows a back-
ground power-law dependence, with an exponent that can be
used to determine the strength of the interactions.

In the presence of an applied voltage between the ends of
the wire, the tunneling-conductance features (peaks or cusps)
split in two, and the magnitude of the split is equal to the
voltage. Thus, in the clean LL model, there is no smearing of
two peaks into a single one, regardless of the strength of
interactions. This implies that the measurements of Ref. 5,
that reveal features which appear naively to be noninteract-
ing, do not in fact rule out the presence of strong interactions
in carbon nanotubes.
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